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Abstract—We re-examine the problem of load balancing
in conservatively synchronized parallel, discrete-eventsim-
ulations executed on high-performance computing clusters,
focusing on simulations where computational and messag-
ing load tend to be spatially clustered. Such domains are
frequently characterized by the presence of geographic
“hot-spots” – regions that generate significantly more
simulation events than others. Examples of such domains
include simulation of urban regions, transportation net-
works and networks where interaction between entities is
often constrained by physical proximity.

Noting that in conservatively synchronized parallel sim-
ulations, the speed of execution of the simulation is de-
termined by the slowest ( i.e most heavily loaded) simula-
tion process, we study different partitioning strategies in
achieving equitable processor-load distribution in domains
with spatially clustered load. In particular, we study the
effectiveness of partitioning via spatial scattering to achieve
optimal load balance. In this partitioning technique, nearby
entities are explicitly assigned to different processors,
thereby scattering the load across the cluster. This is
motivated by two observations, namely, (i) since load is
spatially clustered, spatial scattering should, intuitively,
spread the load across the compute cluster, and (ii) in
parallel simulations, equitable distribution of CPU load is
a greater determinant of execution speed than message
passing overhead. Through large-scale simulation experi-
ments – both of abstracted and real simulation models –
we observe that scatter partitioning, even with its greatly
increased messaging overhead, significantly outperforms
more conventional spatial partitioning techniques that seek
to reduce messaging overhead.

Further, even if hot-spots change over the course of the
simulation, if the underlying feature of spatial clustering is
retained, load continues to be balanced with spatial scat-
tering leading us to the observation that spatial scattering
can often obviate the need for dynamic load balancing.

I. I NTRODUCTION

In parallel computing, achieving an equitable distri-
bution of load across available computing resources is
a significant challenge and often necessitated on high
performance computing platforms, where idle processors
represent a huge waste of computational power. The

problem of unbalanced load is especially egregious in
conservatively synchronized parallel simulation systems,
where causality constraints dictate that the simulation
clock of any two processes not differ by more than a
given time factor (called the look-ahead) [6]. Thus, a
processor with relatively large event load, whose simula-
tion clock advances at a much slower rate, can severely
degrade the performance of the entire simulation.

The load distribution in a parallel simulation is in-
herently an outcome of the partitioning strategy used
to assign simulation entities to processors. Most of the
research into the issue of load balancing and partitioning
in parallel simulations has been approached from the
perspective of dynamic load balancing. An algorithm
based on process migration – a challenging task in itself
– for dynamic load balancing for conservative parallel
simulations is described in [2]. Another dynamic load
balancing algorithm based on spatial partitioning for
a simulation employing optimistic synchronization is
described in [4] and [5], which involves the movement
of spatial data between neighboring processes. A scheme
using PVM [1] for parallel discrete event simulations is
described in [8]. General partitioning and data decom-
position strategies for parallel processing are explored in
[3] but the authors do not specifically consider parallel
simulation applications.

Dynamic load-balancing, in general, presents signifi-
cant implementation challenges in parallel simulations,
due to the complexity of migrating a simulation object
to a different process. In this paper, we explore static
partitioning strategies for load balancing in parallel sim-
ulations, concerning ourselves specifically to problems
where (i) conservatively synchronized parallel simulation
is used, and (ii) the problem domains exhibitspatial
clustering of load. Such domains are frequently charac-
terized by the presence of geographic “hot-spots” i.e. re-
gions that generate significantly more computational and
messaging load than other regions. Examples of such do-



mains include simulation of urban regions, transportation
networks, epidemiological and biological networks and
generally, networks where interaction between entities is
often constrained by physical proximity.

The main partitioning technique described in this
paper – spatial scattering, where nearby entities are
explicitly assigned to different processors with the aim of
scattering the load across the processors – is motivated
by two observations, namely, (i) in many domains, load
tends to be spatially clustered and spatial scattering
should, therefore, spread the load across the compute
cluster, and (ii) in parallel simulations, equitable distri-
bution of CPU load is often a greater determinant of
execution speed than message passing overhead.

An analysis of the scatter partitioning technique, based
on observations that are similar to the ones that motivated
this work, was originally presented in [7]. In that model
(based on the authors’ experiences with one-dimensional
fluid-flow computations and other numerically intensive
problem domains), work-loads of nearby regions also
exhibit strong correlation, and the conclusions reached
are similar to ours. The cost of increased communication
(which is very architecture dependent) that result from
a scatter-based decomposition of processor workloads
were not not part of that model; thus, our work is a val-
idation of the results of [7] on present-day architectures
with high-speed interconnects.

Through large-scale parallel simulation experiments
– both of abstracted and real simulation models – on
HPC clusters, we observe that scatter partitioning –
even with its greatly increased messaging overhead –
often significantly outperforms more conventional spatial
partitioning techniques that seek to reduce messaging
overhead. Further, even if hot-spots change over the
course of the simulation, if the underlying feature of spa-
tial clustering is retained, load continues to be balanced,
which leads us to the observation that spatial scattering
can often obviate the need for dynamic load balancing.

In what follows, we first present a method to generate
an abstracted model of a network with spatially clustered
entity and load distribution. Next we present experimen-
tal results from distributed simulation experiments on
the abstract model using different partition strategies,
comparing the performance of scatter partitioning with
other algorithms. Finally we evaluate load-balancing
and scaling results using scatter on a real application
simulator – a scalable, parallel transportation simulator
that uses real road networks and realistic traffic patterns.

II. M ODELING SIMULATION APPLICATIONS WITH

SPATIAL LOAD CLUSTERING

In this section, we describe an abstracted simulation
model that we use to compare different partitioning
schemes. Our model allows us to capture real world
features like the presence of dense regions with large
load profiles. We first construct a graphG = (V,E),
which we call the simulation graph; the vertices in
the graph, which are points in a plane lying within a
bounding box, are also the load centers that generate
the computation and messaging load. Messages are sent
between vertices inG.

a) Vertex creation process: We start with a bound-
ing box B (a square in our case) and discretizeB
into 100 equally sized square cells{c1, . . . , c100}. The
population of each cell (i.e., the number of vertices in
each cell) is generated according to a distributionD
(in our experimentsD is either normal, uniform, or
exponential). We set the mean of the distribution as
10, 000 (in the case of normal distribution the standard
deviation is1/10 of the mean ). Letsi, chosen fromD,
be the size of the cellci (where1 ≤ i ≤ 100). Then
for each cellci, we assignsi random vertices that are
distributed within the given cell. Figures 1 and 2 show
the spread of the vertices in the bounding box when
the distributionD is normal, uniform, and exponential,
respectively.

b) Edge creation process: Once the vertices are
created, we create edges inG. For our purpose, edges
represent channels of communication between vertices
in the graph i.e each vertex only communicates with
another vertex with whom it shares an edge. Since one
of the features of networks that exhibit spatial clustering
is short edges, during the edge creation phase, an edge is
much more likely to be assigned between vertices that
are close to each other. Letv be a vertex inG. Let
1 ≤ α ≤ 2 be a parameter. Define,

D(v) =
∑

u∈V

d(u, v)−α

whered(u, v) is the Euclidean distance betweenu andv.
We pick an edge(v, u) in the graphG with probability
d(v, u)−α/D(v). This guarantees that most of the edges
within the graph are small. In our experiments, we set
α = 2.

c) Computational load generation procedure: We
generate a load demand for each vertex in the graph as
follows: for a cell ci with si vertices lying inside it,
the mean of the load (normally distributed within the
cell) is si and the standard deviationsi/10. For every
vertex v ∈ V we do the following: if cj is the cell
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that containsv (i.e., the coordinates ofv lie within the
boundary ofcj), then we pick a random numbernv

from a normal distribution with meansj and standard
deviationsj/10. The load onv is then proportional to
nv (the exact mechanism for generating load is described
in Section IV). The right part of Figure 2 shows the
spatial distribution of computational load whenD is
exponentially distributed.

The load of a vertex dictates the number of cycles
spent by the processor to whichv has been assigned.
Additional computational load might be generated for
each vertex due to messages it receives (see below).

d) Message load generation procedure: The pre-
vious three steps are executed in the network creation
phase, and are input to the simulation. Message gener-
ation occurs during the simulation as follows: initially
each vertexv schedulesmv messages for itself,mv

being dependent on the load demand for that vertex
generated in the previous step. When a vertexu re-
ceives a message it does the following: with probability
p, vertex u generates another message and sends this
message to one of its neighbors picked randomly from
its neighbor-list, and with probability1− p it executes a
busy-wait cycle to emulate computational load. We refer
to p as themessage forwarding probability, and is an
input parameter in our experiments.

III. PARTITIONING STRATEGIES

As noted before, in parallel discrete-event simulation
with conservative synchronization schemes, the differ-
ence between the simulation clocks of any two logical
processes is constrained by the look-ahead time. Thus, a
simulation process with a relatively high computation
load, whose simulation clock progresses at a slower
rate, slows down the entire system; essentially the speed
of simulation execution is determined by the slowest
process.

The computational load on a simulation process is
determined by the partitioning scheme used to assign
simulation objects to processors. In this section, we
explore different strategies for partitioning the simula-
tion workload on a high performance cluster. The ideal
partitioning algorithm achieves perfectly balanced com-
putational load while also keeping message overhead to
a minimum. For networks with spatially clustered load,
we explore the effectiveness of four different partitioning
algorithms in this paper.
(1) Geographic Partitioning with Balanced Entity
Load: In networks with spatially clustered load, mes-
sage trajectories are also spatially constrained. Thus,
most of the messages are exchanged between entities
that lie close to each other. A partition algorithm that

minimizes messaging overhead would assign entities
that are geographically close to the same processor. A
simple geographic partitioning scheme would divide
the simulated region into a grid, and assign every
entity that falls into a grid cell to the same processor.
Since the network is not uniformly distributed in terms
of node density (as is the case with exponential and
normally distributed networks seen earlier), a naive
geographic partitioning would end up with highly
unbalanced load. To mitigate this effect, we perform
a geometric sweep assigning equal number of entities
to each grid cell; the resulting partition will consist of
non-uniform rectangular grid cells.

(2) Geographic Partitioning with Balanced Compu-
tational Load: Computational load distribution can
also be highly uneven in certain networks, especially
networks with exponential properties. In such case,
a geographic partitioning with balanced entities can
result in unbalanced computation load. An alternative
approach to balancing entity number is to balance the
estimated computational load across processors during
a geographical sweep. While this is fairly easy to do
when one hasa priori knowledge about load, as is
the case in our abstracted model, in real applications
this is often a difficult task. Load profiles can vary
significantly during the course of the simulation, and
complicated network effects can come into play al-
tering the estimated load contribution of a network
entity.

(3) Scatter Partitioning: Scatter partition exploits the
property of spatial clustering of load by explicitly
assigning entities that lie close to each other todif-
ferent processors i.e., entities arescattered across the
cluster. Since entities that are close to each other have
similar load characteristics, by scattering the entities
one achieves the effect of scattering the load across the
cluster. The obvious drawback to this approach is the
additional messaging and synchronization overhead.
However, one of our observations in this paper is
that, often, for a large-scale parallel simulations on
high performance clusters with fast interconnects, the
computation time dominates message passing over-
head. As we shall see in the following sections, the
additional overhead from message passing is more
than compensated for by balanced load.

IV. D ISTRIBUTED SIMULATIONS OF ABSTRACT

MODEL

To simulate our abstracted network and load model,
we implemented a parallel, discrete event load simulator.
For this, we used a generic C++ framework called Sim-
Core that provides application programming interfaces
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Fig. 1. Left: Heat plot depicting the distribution of the load centers (vertices) whenD is the normal distribution. The darker a cell, the more
the vertices it has; vertices within a cell have similar loadcharacteristics. Right: Heat plot for uniform distribution.
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Fig. 2. Left: Heat plot depicting the distribution of the load centers (vertices) whenD is the exponential distribution. Right: Distribution of
the computational load.

(APIs) and generic data structures for building scalable
distributed-memory discrete-event simulations. SimCore
uses PrimeSSF [9] as its underlying simulation engine
which uses conservative synchronization protocols and
provides APIs for message passing.

The load simulator uses SimCore constructs to model
the abstract network, which primarily consists of nodes
that are scattered in a given region according to some
statistical distribution (described in Section II). Each
node is assigned a load profile, which depends on
the node density of the grid cell containing the node.
The main global inputs to the simulation are: ) total
simulation time T , b) an a priori total event load
L, c) the probability parameterp, that determines the
computational and messaging load, and d) mean number
of computational cyclesC for each computation. Let
N(V ) =

∑
v∈V nv, wherenv (defined in Section II)

is the load parameter generated for vertexv. The basic
algorithm for the load simulator is explained in Figure 3.

Since p < 1, the total number of events that are
generated in the simulation will die out (as it forms
a subcritical branching process) independently of the
type of partition or even the type of network. Each

event will cause amessage to be generated only if
the recipient of the event is on a different processor;
thus, the number of messages generated depend on the
partitioning algorithm.

Obviously, this is a greatly simplified model of a
simulation application; I/O, which is often a major
bottleneck, is not simulated directly. However, the slow-
down of a particular simulation process due to I/O can
be captured through busy-wait cycles.

V. SIMULATION EXPERIMENTS ONGENERAL MODEL

In this section, we present experimental results for
the load simulator using various partitioning schemes
described in Section III. All experiments were carried
out on a high performance computation cluster at the
Los Alamos National Laboratory, comprising of 1290
compute nodes, with each node consisting of two 64-
bit AMD Opteron2.6Ghz processors and 8GB memory.
The compute nodes are connected together by a Voltaire
Infiniband high-speed interconnect. For the partitioning
experiments described in this section, we limited the
cluster size to 64 compute nodes; scaling results on

4



LOAD SIMULATOR ALGORITHM

1) Each vertexv schedules(nv/N(V ))× L events for itself. Note that sum of all events isL.
2) Upon receiving an event, a nodeu:

a) With probabilityp, sends an event (message) to a neighboring node, or
b) With probability1 − p, simulates a computational cycle. Computational cycles are implemented by a

simple busy-wait loop; the number of iterations are geometrically distributed with meanC.

Fig. 3. Load Simulator Algorithm

larger cluster sizes for real simulation applications are
described in Section VI.

We simulated a 100,000 node network for different
spatial distributions – exponential, normal and uniform
– with an average connectivity degree of five. For the
input parameters (see previous section), we setT = 100,
L = 107, andC = 108. We test scenarios with different
messaging overheads by varying the value ofp to be one
of 0.1, 0.5, or 0.9.

Figure 4 shows the execution time and the number
of messages passed in the load simulator under the
various partitioning schemes for the different types of
networks, when the messaging probability is0.9. Even
in this scenario with the most number of inter process
messages, scatter outperforms geographical partitioning
(with balanced entities) by almost an order of magnitude,
despite the message overhead being twice that of the
geographical partitioning schemes.

For subsequent scenarios (Figures 5) when the mes-
sage passing probability is decreased to0.5, scatter has
even better relative performance, even though the abso-
lute execution time increases because of the increased
number of busy-wait cycles (computational load). The
results shown here are for the exponential distributed
network; similar results were observed in the normal and
uniformly distributed networks.

Figures 6 and 7 illustrate the underlying reason for the
superior performance of scatter in comparison to the ge-
ographical partitioning schemes. Each 3D bar represents
the computational load (in terms of busy wait cycles)
on one processor in the 64-processor cluster in the
exponential network case, forp = 0.9 andp = 0.5. Not
surprisingly, the worst performing scheme (geographic
with balanced entities) is also the most unbalanced (the
latter being the cause for the former), while the plots
for scatter partitioning are more or less flat, indicating
a well balanced load across the cluster. The Min/Max
load ratio depicted in these figures is a useful metric
for fairness comparison, since the speed of execution in
a synchronized simulation is determined by the slowest
process; it follows that a low Min/Max ratio will severely

degrade performance, with ideal ratio being1.

VI. PERFORMANCE ONREAL APPLICATIONS

In this section, we present results for the different
partitioning algorithms for a real application simulator.
FastTrans [11], [12] is a scalable, parallel transporta-
tion microsimulator for real-world road networks that
can simulate and route millions of vehicles signifi-
cantly faster than real time. FastTrans combines parallel,
discrete-event simulation (using conservative synchro-
nization) with a queue-based approach to traffic mod-
eling to accelerate road network simulations. Vehicular
trips and activities are generated using the detailed
and realistic activity modeling capability of the Urban
Population Mobility modeling tools that was developed
as part of the TRANSIMS [10] project at the Los Alamos
National Laboratory. For the results presented in this
section, we simulated a portion of the road network in
the North East region of the United States, covering
most of the urban regions of New York, and parts of
New Jersey and Connecticut; the network graphs consists
of approximately half million nodes,1.1 million links
and over25 million vehicular trips. A more detailed
description of FastTransis given in [11], [12].

Figure 8 depicts a heat map of the road network
in the New York region, with areas in red being the
busiest points in the network, and areas in blue being
regions with low traffic volume. Spatial clustering of
load is a conspicuous feature of the road network,
with urban downtowns having much higher activity than
other regions; simulated activity decreases significantly
as one moves away from the core regions. Further,
vehicle trajectories, are by nature, spatially constrained.
Thus, the overwhelming majority of messages (which are
used to represent vehicles in FastTrans) are exchanged
between neighboring network elements. The spatial load
clustering and localized messaging nature of FastTrans
make this a good candidate to test the effectiveness of
scatter partitioning, in comparison to the other schemes.

All partitioning experiments described in this section
were conducted on a high performance computing cluster
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Fig. 4. Comparison of the execution time (above) and messages passed in the exponential network, under different paritioning schemes with
the message forwarding probabilityp = 0.9.
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Fig. 5. Comparison of the execution time (above) and messages passed with the message forwarding probabilityp = 0.5
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Fig. 8. Figure illustrating distribution of
event load in the New York region.

Fig. 9. Figure illustrating assignment
of entities under geographic partitioning
scheme with balanced entities. All entities
in one colored box are assigned to the same
processor.

Fig. 10. A zoomed in figure illustrating as-
signment of entities under scatter partition-
ing scheme. Nearby entities are assigned
different colors (processors)
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Fig. 11. Comparison of execution times of
FastTrans (as a function of #CPUs) under
different partitioning schemes.
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Fig. 12. Comparison of the number of
messages passed in FastTrans (as a func-
tion of #CPUs) under different partitioning
schemes.

Fig. 13. Comparison of fairness of com-
putation load in FastTrans under different
partitioning schemes.

at Los Alamos National Laboratory for different proces-
sor configurations, ranging from32 to 512 processors.
Figure 11 illustrates the basic performance of the various
partitioning schemes in terms of execution speed. Geo-
graphic partitioning with balanced entities performs the
worst, while scatter partitioning is the fastest, outper-
forming geographic partitioning with balanced entities
by about an order of magnitude. Interestingly, perfor-
mance in terms of message-passing overhead is almost
the reverse of execution time – the number of inter-
process messages being passed in scatter partitioning is
an order of magnitude higher than geographic.

The fairness of load distribution is shown in Fig-
ures 14 through 16. These figures illustrate the com-
putational load on each processor in the256 processor
set-up, with load being defined as a weighted sum of
event and routing load. Each bar represents the load on
one CPU over the entire simulation. The best-performing
partitioning scheme (scatter) clearly outperforms the
other schemes. The fairness of the partitioning schemes,
calculated as the ratio of the minimum to maximum pro-

cessor load for a given experiment (with the ideal ratio
being 1) is a useful metric, since the speed of execution
time in a synchronized simulation is determined by the
slowest process. Figure 13 compares this ratio for the
various partitioning schemes; note how these correlate
with speed of execution.

A. A Note on Dynamic Load Balancing

Achieving an equitable distribution of load across a
cluster is a significant challenge as well as a necessity
for computationally intensive tasks, especially in high
performance clusters where idle processors represent a
huge waste of computational power. A partition algo-
rithm can exploit knowledge of the problem domain, and
assigna priori load profiles to entities in the network,
but as we have seen, these do not always translate into a
balanced run-time load distribution. Further, complicated
network effects and highly dynamic scenarios can result
in significant geographical migrations of load. For ex-
ample, in the case of a transportation network, the event
and routing load profile may differ significantly in a
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in FastTrans in a256 CPU run under geo-
graphic partitioning with balanced load.

simulation of a disaster scenario than from the simulation
of a normal day. However if the load patterns continue to
exhibit spatial clustering (as is often the case), it is fairly
intuitive to see that scatter partitioning would continue to
achieve a balanced load profile, thus largely obviating the
need for dynamic load balancing. Generally, for problem
domains that exhibit spatial clustering of load, scatter
partitioning is a simple and highly effective approach.

VII. C ONCLUSION

In this paper we presented a partitioning technique
for achieving balanced computational load in distributed
simulations of networks that exhibit spatial load clus-
tering. Such domains include transportation networks,
epidemiological networks and other networks where
geographical proximity constrains interaction between
entities, often leading to geographical hotspots. Through
simplified models and a real application, we demon-
strated the effectiveness of explicit spatial scattering for
achieving near optimal load balance, and vastly improved
execution times – even at the cost of increased messaging
overhead – compared to more traditional topological par-
titioning schemes. Directions for future research include
validating the effectiveness of scatter partitioning for
different types of simulation applications.
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